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Abstract: The generation and the detection of 
acoustic waves by laser sources allow the non-destructive 
and non-contact testing of many structures and 
particularly of those having a complex geometry. For 
example, it is possible to excite simultaneously surface 
and bulk waves on cylinders of small diameter or on balls 
of small size. 

This type of control often forms part of important 
industrial issues and in the vast majority of cases, the 
direct interpretation of the received signals remains 
difficult. Indeed, various mode conversions can occur 
following the multiple reflections of waves within the 
sample. Moreover, it is also possible to observe in certain 
situations, superposition phenomena which complicate 
again the analysis of the results. Thus, it appears 
necessary to have a model able to predict the 
displacement generated by the waves in a given point of 
the structure. 

In this work, we present numerical results obtained 
by FEM allowing us to study the propagation of guided 
waves in plates with linearly variable thickness. A signal 
processing method which is well suitable to extract the 
dispersion curves of Lamb modes is first used. Then, the 
results are analyzed in order to highlight the influence of 
the thickness variation on the various generated modes. 
Finally, the A0 mode dispersion curves are compared 
with those of structures having a constant thickness and 
the velocity variations are discussed.  
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A. Introduction 
The use of Lamb waves for the characterization of 

plates or cylindrical structures is very useful in a great 
number of practical situations. For example, these guided 
waves allow the study of corrosion and adhesion 
phenomena or the detection of cracks [1]-[3]. In the 
majority of cases, Lamb waves are generated and 
detected by piezoelectric transducers using the wedge 
method. Consequently, a contact with the structure and 
the use of a coupling medium such as oil or water are 
necessary [4].  

In this paper, the propagation of these waves in thin 
plates with linearly variable thickness is studied. The 
objective is to quantify, using finite element modeling, 
the influence of the thickness variation on the dispersion 

of the Lamb wave modes excited. The considered films 
have a thickness of the order of a tenth of a millimeter 
and the fragility of these structures implies naturally the 
use of a non-contact method of investigation. Laser-
Ultrasonics technique which allows the optical generation 
and detection of acoustic waves in a wide frequency 
range is thus well adapted to this type of problems [5]-
[6]. The present study can find applications in the on-line 
control of various films particularly during the extrusion 
process. It can also be seen as a first stage in the 
characterization of variable thickness coatings for which 
optical applications are numerous (filters, attenuators).  

In a first part, some fundamental properties of Lamb 
waves are quickly reviewed. Then, the main 
characteristics of the used model are presented. To finish, 
the results obtained on a thin aluminum plate are 
analyzed and discussed. 

B. Properties of Lamb waves 
Lamb waves are normal modes of vibration of an 

infinite free elastic plate. The propagation velocities of 
the various modes depend only on the longitudinal (Vl) 
and shear (Vt) velocities in the material, as well as on the 
frequency-thickness product. Figure 1 shows the group 
and phase velocities of the first two Lamb modes in an 
aluminum plate (Vl = 6225 m/s and Vt = 3028 m/s) 
obtained from numerical resolution of the Rayleigh-
Lamb equations [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Phase (p) and group (g) velocities of the first 
symmetrical (S0) and antisymmetrical (A0) Lamb wave modes 
for an aluminum plate. 
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The A0 and S0 modes are the only ones to propagate 
when the frequency-thickness product tends to zero. 
Using a Mach-Zehnder type of interferometer, the A0 
mode will be better detected than the S0 mode because it 
corresponds to a flexion mode and its displacements are 
essentially normal. For low frequency-thickness 
products, the propagation velocity of the S0 mode 
becomes almost independent of the thickness of the plate 
and of the frequency. In that case, this velocity is nearly 
equal to the sheet wave velocity Vp given by the 
expression: 

2p t t lV 2 V   1 (V  / V) = −  (1)         (2) 

C. Finite element modeling 
The excitation of acoustic waves in a metallic sample 

using a laser source is based on the conversion of a part 
of the incident electromagnetic energy into heat. Thus, it 
is the transient thermal dilation of the material that 
generates ultrasounds. In thermoelastic mode, when the 
light power density absorbed does not allow to reach the 
melting point of the material, a point source located at the 
sample surface can be modeled (in two dimensions) by a 
dipole D formed by a pair of tangential forces to this 
surface. The dipole strength is then given by the 
expression [5]: 

D 3 B V T= ϑ δ  (2)                                                                                                                       

where ϑ  is the coefficient of linear thermal expansion, B 
the bulk modulus of elasticity, V the volume of matter 
heated and Tδ  the rise of temperature due to the laser 
shot. The parameter Tδ can be easily obtained using the 
classical heat equation:  

2 aP1 TT
t Kκ

∂
∇ − = −

∂
                                                 (3)             

where T is the temperature, κ  and K correspond 
respectively to the thermal diffusivity and the thermal 
conduction of the material and Pa is the light power 
absorbed by the material per unit of volume [8]. In order 
to model by finite elements the acoustic waves 
propagation, it is also necessary to consider the general 
equation of motion given by the fundamental principle of 
the dynamics:  

vdiv fσ ρ γ+ =
uuur uur r

                                                      (4)               

In this expression, σ  is the stress tensor, 
ur
vf the bulk 

forces applied to the structure, 
r
γ  the acceleration vector 

and ρ the density.  
It is possible to introduce in the equation (4), the 

temperature T which is a function of the spatial 
coordinates and of time. However in that case, the 
calculus of the displacements in each point of the 
structure requires the resolution of two coupled equations 
and the number of nodes is then computationally costly 
as the time of calculation [9]. An approximate method is 
to first calculate the rise of temperature at the center of 
the laser spot and then to assign the temporal dependence 
of this one to the strengths of the bipolar model presented 

previously. Then, the equation (4) allows us to obtain by 
finite elements the displacements.  
 

D. Geometry of the structure 
The structure used in the calculations is presented in 

figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Schematic of the linearly variable thickness plate 
studied. R defined the thickness reduction. 

The thickness reduction R is defined by the expression:  

R 1 (EF / CD)= −  (5) 

The length CD is constant in all the simulations and its 
value is 0.1 mm. The laser beam is located at point O and 
the normal displacement of the sample surface is 
calculated at two pairs of points: A, B and A ', B '. Zone I 
and zone II are respectively defined by the regions of the 
sample located between each of these pairs of points.  

E. Results and discussions 
Figures 3(a) and 3(b) present respectively the normal 

displacement calculated in points B and B ' for R=40 %. 
These results are obtained using a uniform mesh. The 
sampling period is 10 ns and the number of nodes is at 
least 35000 (quadratic elements). These results allow to 
clearly observe two Lamb modes. At around the time of  
2 µs, the S0 mode is observed with a velocity close to the 
sheet velocity given by Vp=5291 m/s. This mode is not 
very sensitive to the variation of thickness because it is 
slightly dispersive at the frequency-thickness product 
considered (see Fig. 1). The second wave train represents 
the A0 mode whose normal displacement is very large in 
comparison with the displacement of the S0 mode. The 
low frequencies of this mode are very sensitive to the 
variation of thickness and this independently of the 
direction of propagation (towards decreasing or 
increasing thickness). A wavelet transform [10]-[12] of 
the signals obtained at points A and B as well as at points 
A' and B' is then computed. It allows to determine the 
dispersion curve of the A0 mode and then to evaluate the 
influence of thickness reduction R on the group velocity. 
In order to do this, the maximum value of the modulus of 
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( )αn
t f

the wavelet coefficients is located in time for each 
frequency f. It gives us an arrival time noted 

 

where   (n=1,2,...) denotes the considered position in 
space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Fig. 3. Normal displacement calculated for a thickness 
reduction R = 40 % .Figures (a) and (b) correspond respectively 
to the displacement at point B(0mm, 10mm) and B’(0 mm, -10 
mm). 

The frequency-dependent group velocity ( )gV f  in 
each zone is then deduced using the expression: 

21

( )
( ) ( )

=
− αα

g
DV f

t f t f
  (6)                               

where D denotes the distance between A and B also equal 
to the distance between  A’ and B’. For zone I, it follows 

1 Bα = , 2 Aα =  and for zone II, 1 'Bα =  and 2 'Aα = .  
Results concerning the zones I and II are given 

respectively in figures 4(a) and 4(b). We note that 
whatever the zone and the frequency considered, the 
group velocity decreases with the reduction of thickness. 
In addition, its evolution according to the frequency 
seems similar to the dispersion curve of the A0 mode for 
a plate of constant thickness with average thickness of 
the zone considered. The variation of the group velocity 
according to the thickness reduction R appears more 

pronounced in the zone I than in zone II. The first reason 
is that zone I is more affected than zone II considering 
their average thickness in comparison with the plate 
thickness before reduction. The second reason is given by 
the shape of the A0 mode dispersion curve. Indeed, for a 
given frequency, the range of the frequency-thickness 
product in zone I corresponds to a larger variation of the 
group velocity than in zone II. 
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Fig. 4. Influence of the thickness reduction R on the group 
velocity of the A0 mode. Figures (a) and (b) correspond 
respectively to the propagation of the wave in zone I and in 
zone II of the structure.  

Thus, each of the previous figures represents a 
specific chart connected with a zone of the sample. So, 
this type of chart allows us to deduce the thickness 
profile of the structure from the group velocity 
measurement and the knowledge of the length CD. It is 
also interesting to calculate the dispersion curves of a 
plate with thickness equal to the average thickness in one 
of the previous zones for different coefficients of 
reduction R. In order to do this, zone II is chosen. The 
average thickness is then given by the distance GG’ 
where G and G’ are respectively the middles of the 
segments [A’B’] and [D’C’] as shown in figure 2. The 
process to obtain the dispersion curve of the A0 mode is 
the same as the one described before in the considered 
zone. The results are given for different thickness 
reductions in figure 5. It appears that the dispersion 
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curves calculated for a variable thickness plate are very 
close to those calculated for a constant thickness plate. 
However, when the thickness reduction increases, the 
difference between these two curves increases too and 
depends strongly on the frequency range considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Dispersion curves of the A0 mode in zone II for variable 
thickness and constant thickness plates calculated for different 
thickness reductions R. 

This is clearly shown in figure 6 giving the 
difference of group velocities Vd defined by:  

d g,v g,cV V V= −                (7)                                                 

where Vg,v and Vg,c correspond respectively to the group 
velocities of plates with linearly variable and constant 
thickness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Difference Vd between the A0 mode group velocities of 
variable and constant thickness plates in terms of frequency and 
for different  thickness  reductions R. 

F. Conclusion 
In this work, the thermoelastic generation of Lamb 

waves was considered and their propagation in plates of 
linearly variable thickness was simulated using a finite 
element model. It was shown that using the group 
velocities of the A0 mode obtained in a specific zone of 
the sample, it was possible to know the thickness profile 
of the structure. A comparison of these results with those 

obtained considering plates of constant thickness was 
also presented. It has been shown that for thickness 
reduction up to 40%, the dispersion curves calculated for 
a specific constant thickness plate are very close to those 
obtained for a linear variation of plate thickness. Further 
work is however needed to experimentally confirm these 
results and to evaluate precisely the accuracy for the 
thickness measurement.  
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