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Abstract: Pseudospectral methods are widespread 

techniques used in electromagnetics and geophysics to 
model wave propagation in fairly inhomogeneous media. 
Stability and high accuracy can be achieved from as few 
as two points per wavelength. A 2D pseudospectral time-
domain (PSTD) algorithm was previously developed to 
simulate the transmit radiation pattern in water of an 
ultrasonic transducer using the front face pressure as 
input. Here, this algorithm is improved by taking into 
account the piezoelectric effect (with mechanical losses) 
in the active element of the transducer. For this, the 
PSTD algorithm is combined with a finite-difference 
time-domain (FDTD) method. From the piezoelectricity 
constitutive equations under quasi-static approximation, 
stress and velocity variables are calculated with the 
PSTD method. Since Poisson equation for the electrical 
potential is not time dependent, this variable is obtained 
from the FDTD method. Two different configurations 
have been investigated. In each case, the piezoelectric 
element is a PZT plate resonator with a 50 MHz 
thickness resonant frequency. The first one is composed 
of the piezoelectric element alone immersed in water. For 
the second one, a backing and a matching layer are 
added. Continuity of the electrical field is imposed at the 
borders of the piezoelectric material and perfectly 
matched layers (PML) are developed to avoid artifacts 
from waves reflected on the grid sides. The main 
characteristic values (displacement, stress and electrical 
potential) are calculated and are found to be in good 
agreement with those obtained using a finite element 
method (ATILA®). 
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method; finite-difference time-domain (FDTD) method; 
piezoelectricity; transducer modeling. 

A. Introduction 
The pseudospectral (PS) and finite-difference (FD) 

methods are widespread techniques used for the 
simulation of waves propagating in fairly inhomogeneous 
media [1]. The PS method consists in calculating the 
derivatives of a variable in the Fourier domain, and 
requires as few as 2 nodes per minimum wavelength to 
provide exact solutions [2]. That is why a PS algorithm 
was previously implemented to model acoustic waves 
propagation in water. It was combined to a Perfectly 
Matched Layer (PML) condition at the borders of the 
computational domain to avoid the incident waves to be 
reflected and counter the wrap-around effect from the 
FFT [3]. The algorithm was completed by the simulation 

of the electrical excitation in order to simulate both the 
piezoelectric transducer vibration and the resulting wave 
propagation in the surrounding media, while keeping the 
different advantages described above. To compute the 
electric field, quasistatic approximation is assumed, 
which leads to the resolution of a time independent 
equation with a second order derivative. As the PS 
method is not adapted to this kind of operation, we use 
the FD method to calculate the electric field generated in 
the piezoelectric media. This method is efficient to model 
piezoelectric elements with various geometries and 
materials [4], which is interesting for the simulation of 
transducers with different structures and excitation 
sources, but is more limited than the PS method by 
numerical dispersion. That is why the propagation of 
acoustic waves over large distances is simulated by the 
PS method, so that the advantages of both methods are 
retained.  

In the following part we will briefly describe the 
basis of the theory with the governing equations, 
including mechanical losses, and the main steps of this 
hybrid FD-PSTD algorithm. Then we will present the 
results obtained with this method for the simulation of a 
two-dimensional piezoelectric element vibrating alone in 
water and with a configuration closer to that of a real 
transducer (backing and front matching layer). To 
validate the FD-PSTD method these results are compared 
to those obtained with the ATILA finite element (FE) 
software [5]. 

B. Model description 
B.1. Governing equations 

The modeling of piezoelectric vibration and of the 
acoustic waves propagating in the entire structure of the 
transducer is based on mechanical and electromagnetic 
equations. Using Einstein's convention for repeated 
indices, the propagation of the acoustic waves is 
described by the following equations [6]: 
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The vibration of the piezoelectric element excited by 
an electrical source is governed by the piezoelectric 
constitutive equations, associated to Maxwell's relations, 
which leads to the following system: 
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where v  is the particle velocity tensor, T  is the stress 
tensor, D  is the electric displacement vector, E  is the 
electric field vector, ρ  is the material density, Ec  is the 
stiffened stiffness tensor, e  is the piezoelectric tensor 
and Sε  is the dielectric permittivity tensor. The losses in 
the materials are limited to the mechanical ones, the other 
losses being considered negligible. In the harmonic 
domain these losses are introduced through imaginary 
parts of the coefficients of the stiffness tensor: 

'.(1 . '. )E E
ij ijc c jα ω= + , 

with 'α  the coefficient of a quadratic frequency-
dependent attenuation in materials. Equation (3) is then 
modified and becomes in the temporal domain: 
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As usual the evolution of the electromagnetic field is 
considered instantaneous compared to the propagation of 
mechanical waves. Thus, the quasistatic approximation is 
used and the description of the electromagnetic field is 
reduced to the local Gauss relation: 

ediv ρ= D . (6) 

As there is no free charge inside the piezoelectric 
element ( 0eρ = ), the combination of (4) and (6) leads to 
a direct relation between displacements and potentials: 
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where φ  is the electrical potential and / tφ φ= ∂ ∂ . 
Equations (1), (5) and (7) form a system governing the 
generation and the propagation of acoustic waves in a 
piezoelectric media.  

B.2. Steps of the algorithm 
The calculation is performed in three main steps. The 

first step (Fig. 1) consists in calculating the temporal 
derivatives of stress through (5) from the electric field 
and the acoustic velocity known at t n= . This electric 
field is initialized inside the piezoelectric material by the 
initial electrical source conditions. To obtain the stress 
field T  at / 2t n t= + Δ , the derivatives of stress are 
integrated using the fourth order coefficients of Adams-
Bashforth's (AB) relationship for time-staggered grids 
[7]: 
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where tΔ  is the temporal increment. The use of time-
staggered grids enhances the temporal resolution of the 
model. 

 
Fig.1.  Scheme of the FD-PSTD algorithm. 

Then, as a second step, the temporal derivatives of 
acoustic velocity are calculated by solving (1), and 
another integration of AB gives the new acoustic velocity 
field v  at t n t= + Δ . These two first steps are solved 
using the PS method, which consists in calculating the 
spatial derivatives in the Fourier domain [8]. To obtain, 
for instance, the first derivative of Tij along xj axis in the 
time domain, we perform the following operations: 
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where the wave number kj is the vector: 
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with N the number of nodes along xj axis on the grid of 
Tij. Due to the use of FFT operations, these steps require 
a smooth evolution of the variables in time and space. 

The third step consists in solving (7) to calculate the 
electrical potentials inside the piezoelectric material. In 
our Cartesian coordinates (defined, for instance, by x1 
and x3 axes) this equation can be expressed: 
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with φ&  the unknown variable which has to be 
determined. The second part of the equation is calculated 
during the previous steps of the algorithm, and will be 
called Rj,k. As this equation is not time dependent it can 
not be solved using the PS method. That is why a FD 
representation is used, and it leads to a new discretized 
expression of the equation: 
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with: 

,j kφ&  the temporal derivative of φ  at node (j, k), 

ixΔ  the space increment along ix  axis, 
i
pqε%  the average value of pqε  along ix  axis, 

i
pqεΔ  the derivative of pqε  with respect to ix  axis. 
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As this equation must be solved at each node (j, k) of 
the grid defined by the unknown potentials, we obtain at 
each time step a system of linear equations which can be 
written: 

Q . X = R , 

with Q  a block tri-diagonal matrix that has to be 
inverted, ( ), ,j k j k

φ&X=  the unknown vector and ( ), ,j k j k
RR= . 

When vector X  is calculated, the electric field can be 
easily determined and an other iteration of the algorithm 
can start.  

C. Results 
C.1. Piezoelectric element in water 

The numerical results of the FD-PSTD method are 
compared to those of the ATILA® FE software. In order 
to validate our method the first simulation is performed 
using the simple two-dimensional model of a thin 
piezoelectric plate with a half-wavelength thickness, 
covered on both sides with electrodes excited by a 50 
MHz sinusoidal electric signal during half a period. The 
piezoelectric element is a PZT resonator (Ferroperm 
Piezoceramics Pz27) polarized in the x3 direction with a 
50 MHz thickness resonant frequency. As the 
piezoelectric resonator is modeled in the plane containing 
x1 and x3 axes, its characteristics of interest are 
summarized in Table 1. 

Table 1.  Coefficients of the stiffened stiffness ( 1010  N/m²), 
dielectric permittivity and piezoelectric (C/m²) tensors of Pz27. 

11
Ec  13

Ec  33
Ec  44

Ec  11 0/Sε ε 33 0/Sε ε 15e  31e  33e  

14.7 9.37 11.3 2.30 1130 914 11.64 -3.09 16 

The plate is assumed to be infinite along x2 axis, its 
thickness Th is along x3 while its length L is along x1. It 
has a length-to-thickness ratio (L/Th) of approximately 
14 which is around a minimum to keep the thickness 
mode predominant. All losses are considered negligible 
compared to the mechanical ones. The piezoelectric 
element is immersed in water and the configuration of the 
simulation is detailed in Table 2. 

Table 2.  Configuration used for the simulation of the 
piezoelectric plate immersed in water. 

pe  /L Th
 

ρ  α  
lc  ef  pλ  

43.3 14 7700 0.085 4335 50 86.7 

( )pe µm : thickness of the piezoelectric bar; /L Th : length-to-
thickness ratio; 3( / )kg mρ  : density; ( / / )dB mm MHzα  : acoustic 
attenuation; ( / )lc m s : longitudinal wave velocity; ( )ef MHz : 
excitation frequency; ( )p µmλ  : acoustic wavelength in the 
piezoelectric material. 

To observe and compare the results of the 
simulations using FD-PSTD and FE algorithms, the 
pressure field is picked up at a fluid node (above the top 
electrode) just in front of the middle of the piezoelectric 

plate, and its evolution is presented on Fig. 2. 

 
Fig.2. Evolution of the pressure in water in front of the 
piezoelectric plate, on the central axis, simulated using FD-
PSTD and FE methods. These results are compared to the 
lossless case (FD-PSTD). 

As expected, the mechanical losses slightly 
attenuates the oscillations of the pressure field, and the 
result of the FD-PSTD method is in good agreement with 
the one obtained using ATILA® software. The 
simulation lasts long enough to observe the perturbation 
introduced by the incoming transversal waves, but the 
acoustic response for this simple configuration is very 
long. The use of a backing and of a front matching layer 
produces a much shorter response. 

C.2. Transducer configuration 
In order to simulate the acoustic waves generated by 

a piezoelectric element in the configuration of a real 
transducer, we add a backing and a matching layer on the 
faces of the active element. The characteristics of this 
piezoelectric element were previously described in Table 
1. The configuration used is illustrated on Fig. 3 and the 
characteristics of the materials are summed up in Table 3. 

 
Fig.3. Simulated configuration of the transducer 
(dimensions are given in µm). 
The L/Th ratio of the piezoelectric element is now 20 to 
emphasize the thickness mode. The acoustic impedance 
was imposed at 6 MRa. Thus, using an homogenization 
model [9] and considering an epoxy resin loaded with 
tungsten powder, a volume fraction of 15% of metallic 
powder is necessary. The longitudinal wave velocity is 
then deduced with this model (Table 3). With the KLM 
scheme and an optimization algorithm, the thickness and 
the acoustical impedance of the front matching layer 
were calculated. Values are summarized in Fig. 3 and 
Table 3. This optimization was performed for medical 
imaging applications and corresponds to a trade-off 
between sensitivity and bandwidth of the electro-acoustic 
response of the transducer. 
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Table 3.  Characteristics of the materials used for the transducer components. 
Component Thickness ( )µm  ρ  3( / )kg m  lc ( / )m s tc ( / )m s Z ( )MRa  α  ( / / )dB mm MHz  
Piezoelectric layer 43.3 7700 4335 2530 33.4 0.085 
Backing 2000 3830 1575 780 6 0.48 
Matching layer 8.1 4490 1530 765 6.9 0.50 

 
The propagation over time of the acoustic waves 

inside the structure of the transducer can be observed in 
Fig. 4. The study is focused on the waves propagating in 
the close space surrounding the piezoelectric layer. Fig. 
4a) is a snapshot taken at t=10 ns (0,5T) on which we can 
see the stress field created inside the piezoelectric media 
by the electrical excitation (T=20 ns). The acoustic waves 
then propagate in the backing above and in the front 
matching layer below. On Fig. 4b), taken at t=60 ns (3T), 
the waves have spread into water and they are absorbed 
by the PMLs at the borders of the computational space. 

 

 
Fig.4. Stress field and pressure in the computational domain at 
instants a) t=10 ns (T/2) and b) t=60 ns (3T). The temporal 
period T corresponds to the central frequency of the transducer. 

To compare these results with those of ATILA® 
software, we pick up the the pressure in water on the 
central axis of the transducer, a few µm in front of the 
matching layer. The results are obtained by the PS-FDTD 
and the FE method using a meshing of λ/12 width square 
cells, with λ=30µm the acoustic wavelength in water. As 
the modeling of PMLs is not enabled in the FE algorithm 
used, the time-processing required by the FD-PSTD 
method is around a thousand times shorter than that of 
the FE software. The results are presented in Fig. 5. 

 
Fig.5. Evolution of the pressure in water in front of the 
matching layer, on the central axis of the transducer, simulated 
using FD-PSTD and FE methods. 

They are similar to the usual response of a transducer 
with this configuration. The extra oscillations obtained 
with the FE method are typically due to the fact that it 

requires a more accurate meshing than the FD-PSTD 
method to provide exact solutions. 

D. Conclusion 
A new hybrid FD-PSTD algorithm has been 

developed to model a piezoelectric resonator in various 
configurations. Its purpose is to keep the advantage of the 
PSTD method to efficiently simulate the propagation of 
acoustic waves over the large structures of a transducer, 
and the advantage of the FDTD method to model 
resonators with various geometries and materials. The 
presented results are obtained with the simulation of 
transducers with simple configurations, but they are in 
good agreement with those of ATILA® software and 
they validate the efficiency of the FD-PSTD algorithm. 

The future work will be the extension of the 
algorithm to axisymmetrical geometry so as to enable the 
modeling of piezoelectric disk resonators, excited by 
various electrical conditions. 
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